Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
SFB/Transregio 285

A03 - Berechnung und Bewertung prozessinduzierter Werkstoffstrukturphänomene in FKV-Metall-Verbindungen

Der Einsatz von Faser-Kunststoff-Verbunden (FKV) mit thermoplastischer Matrix ermöglicht die Fertigung von Leichtbaustrukturen innerhalb kürzester Taktzeiten. Durch Ausnutzung der charakteristischen Werkstoffeigenschaften, insbesondere der Warmumformbarkeit und der Anisotropie, lassen sich zudem Verbindungen artfremder Fügepartner mit neuartigen Montageschnittstellen wie warmgeformten Bolzenlöchern, Thermoclinch-Verbindungen, thermisch unterstützte Clinchverbindungen, warmeingebettete Inserts oder hilfsmittelfrei gefügte Pin-Verbindungen realisieren. Die zugehörigen Fügeprozesse und deren Vorbereitungsschritte gehen mit sukzessiven lokalen Veränderungen der Werkstoffstruktur des FKV einher. So werden etwa bei warmgeformten Löchern in Thermoplastverbunden Fasern in der Fügezone verschoben und so die Verstärkungsstruktur lokal verdichtet, woraus sich örtlich variierende Faservolumenanteile und Faserwinkel sowie Verdrängungen des Matrixmaterials ergeben. Diese lokal variierende Werkstoffstruktur mit ihrem maßgeblichen Einfluss auf das Tragverhalten der Verbindung resultiert aus einer Vielzahl werkstofflicher und konstruktiv-technologischer Einflussparameter. Bislang wird sie über aufwändige Strukturaufklärungen der Fügezone nach dem Fügeprozess ermittelt, da eine Vorhersage mittels Prozesssimulation nur eingeschränkt möglich ist. Die nachgelagerte rechnerische Tragfähigkeitsanalyse erfolgt unter der Annahme einer idealisierten Verstärkungsstruktur und abgeminderten Einzelschichtkennwerten. Damit werden derzeit erhebliche Potenziale hinsichtlich der spezifischen Tragfähigkeit der Verbindungsstelle sowie der flexiblen Anpassung des Fügeprozesses nicht ausgeschöpft.

Im Hinblick auf eine prognosesichere Fügbarkeit sowie eine verbesserte Ausnutzung des Lastübertragungspotenzials von Thermoplastverbund-Metall-Strukturen und der damit einhergehenden Wandlungsfähigkeit der Prozesskette soll im Teilprojekt A03 eine durchgängige Simulationskette vom Fügeprozess bis zur strukturmechanischen Bewertung von FKV/Metall-Verbindungen erarbeitet werden. Hierzu wird eine skalenübergreifende Betrachtungsweise erarbeitet, mit der sich der Einfluss prozessbedingter Vorgänge auf die resultierende mikroskopische Werkstoffstruktur aufzeigen und im Rahmen makroskopischer Tragfähigkeitsanalysen warmgeformter FKV-Verbindungselemente auf Verbundebene berücksichtigen lassen. Hierfür werden Methoden zur Modellierung und Berechnung der aus dem jeweiligen Fügeprozess resultierenden ortsaufgelösten FKV-Eigenschaften entwickelt. Das zu erarbeitende tiefgreifende phänomenologische Verständnis sowie die physikalisch basierte Betrachtungsweise bilden die Grundlage für die werkstoffgerechte Flexibilisierung der im TR betrachteten Prozessketten. Erst hiermit lassen sich variierende Geometrie-, Werkstoff- und Prozessparameter in der Berechnung bereits im Konstruktions- und Auslegungsprozess zielgerichtet adressieren und deren Einfluss auf die resultierende Verbindungsstelle bewerten.

Neben der Aufbereitung bereits etablierter Modellierungsansätze auf Einzelschichtebene zur Simulation des mesoskopisch homogenisierten Verbundverhaltens für FKV/Metall-Fügeverbindungen steht in Phase I insbesondere die Beschreibung der prozessbedingten Einzelfaserdeformationen auf Basis experimenteller Versuche auf der Mikroskala im Fokus. Für diese Prozessanalyse werden die Interaktionen von Einzelfasern und schmelzflüssiger Matrix während des Fügeprozesses sowohl experimentell als auch numerisch untersucht. Dabei wird das unterschiedliche Verdrängungsverhalten von Fasern und Matrix erfasst. Weiterführend werden richtungs- und faservolumengehaltsabhängige Permeabilitäten abgeleitet, mit denen der Warmumformprozess dann skalenübergreifend beschrieben werden kann.

Werkstoffgerechtes Fügen FKV

Datenschutzhinweis: Bei diesem Video handelt es sich um ein YouTube-Video. Mit Klick auf das Abspiel-Symbol werden Daten (u.a. Ihre IP-Adresse und die URL des Videos) an YouTube übermittelt.

Veröffentlichungen


Liste im Research Information System öffnen

Characterization and Numerical Modelling of Through-Thickness Metallic-Pin-Reinforced Fibre/Thermoplastic Composites under Bending Loading

H. Böhm, H. Zhang, B. Gröger, A. Hornig, M. Gude, Journal of Composites Science (2020), 4, pp. 188

DOI


Experimental and Numerical Studies on the Deformation of a Flexible Wire in an Injection Moulding Process

D. Köhler, B. Gröger, R. Kupfer, A. Hornig, M. Gude, Procedia Manufacturing (2020), 47, pp. 940-947

DOI


Clinching of Thermoplastic Composites and Metals—A Comparison of Three Novel Joining Technologies

B. Gröger, J. Troschitz, J. Vorderbrüggen, C. Vogel, R. Kupfer, G. Meschut, M. Gude, Materials (2021), 14, pp. 2286

Clinching continuous fibre reinforced thermoplastic composites and metals is challenging due to the low ductility of the composite material. Therefore, a number of novel clinching technologies has been developed specifically for these material combinations. A systematic overview of these advanced clinching methods is given in the present paper. With a focus on process design, three selected clinching methods suitable for different joining tasks are described in detail. The clinching processes including equipment and tools, observed process phenomena and the resultant material structure are compared. Process phenomena during joining are explained in general and compared using computed tomography and micrograph images for each process. In addition the load bearing behaviour and the corresponding failure mechanisms are investigated by means of single-lap shear tests. Finally, the new joining technologies are discussed regarding application relevant criteria.


Computed tomography investigation of the material structure in clinch joints in aluminium fibre-reinforced thermoplastic sheets

B. Gröger, D. Köhler, J. Vorderbrüggen, J. Troschitz, R. Kupfer, G. Meschut, M. Gude, Production Engineering (2021)

DOI


Modelling of thermally supported clinching of fibre-reinforced thermoplastics: Approaches on mesoscale considering large deformations and fibre failure

B. Gröger, A. Hornig, A. Hoog, M. Gude, ESAFORM 2021 - 24th International Conference on Material Forming (2021)

Thermally supported clinching (Hotclinch) is a novel promising process to join dissimilar materials. Here, metal and fibre-reinforced thermoplastics (FRTP) are used within this single step joining process and without the usage of auxiliary parts like screws or rivets. For this purpose, heat is applied to improve the formability of the reinforced thermoplastic. This enables joining of the materials using conventional clinching-tools. Focus of this work is the modelling on mesoscopic scale for the numerical simulation of this process. The FTRP-model takes the material behaviour both of matrix and the fabric reinforced organo-sheet under process temperatures into account. For describing the experimentally observed phenomena such as large deformations, fibre failure and the interactions between matrix and fibres as well as between fibres themselves, the usage of conventional, purely Lagrangian based FEM methods is limited. Therefore, the combination of contact-models with advanced modelling approaches like Arbitrary-Lagrangian-Eulerian (ALE), Coupled-Eulerian-Lagrangian (CEL) and Smooth-ParticleHydrodynamics (SPH) for the numerical simulation of the clinching process are employed. The different approaches are compared with regard to simulation feasibility, robustness and results accuracy. It is shown, that the CEL approach represents the most promising approach to describe the clinching process.


Temperature dependent modelling of fibre-reinforced thermoplastic organo-sheet material for forming and joining process simulations

B. Gröger, A. Hornig, A. Hoog, M. Gude, Key Engineering Materials (2021), 883 KEM, pp. 49

Joining and local forming processes for fibre-reinforced thermoplastics (FRTP) like hole-forming or variations of the clinching process require an in-depth understanding of the process induced effects on meso-scale. For numerical modelling with a geometrical description of a woven fabric, adequate material models for a representative unit cell are identified. Model calibration is achieved employing a mesoscopic finite-element-approach using the embedded element method based on tensile tests of the consolidated organo-sheets and a phenomenological evaluation of photomicrographs. The model takes temperature dependent stiffness and fibre tension failure into account.


Joining Processes for Fibre-Reinforced Thermoplastics: Phenomena and Characterisation

J. Troschitz, B. Gröger, V. Würfel, R. Kupfer, M. Gude, Materials (2022), 15(15), 5454

Thermoplastic composites (TPCs) are predestined for use in lightweight structures, especially for high-volume applications. In many cases, joining is a key factor for the successful application of TPCs in multi-material systems. Many joining processes for this material group are based on warm forming the joining zone. This results in a change of the local material structure characterised by modified fibre paths, as well as varying fibre contents, which significantly influences the load-bearing behaviour. During the forming process, many different phenomena occur simultaneously at different scales. In this paper, the deformation modes and flow mechanisms of TPCs during forming described in the literature are first analysed. Based on this, three different joining processes are investigated: embedding of inserts, moulding of contour joints, and hotclinching. In order to identify the phenomena occurring in each process and to describe the characteristic resulting material structure in the joining zones, micrographs as well as computed tomography (CT) analyses are performed for both individual process stages and final joining zones.


Forming process induced material structure of fibre-reinforced thermoplastics - Experimental and numerical investigation of a bladder-assisted moulding process

B. Gröger, V. Würfel, A. Hornig, M. Gude, Journal of Advanced Joining Processes (2022), 5

DOI


Characterisation of Fibre Bundle Deformation Behaviour—Test Rig, Results and Conclusions

A. Borowski, B. Gröger, R. Füßel, M. Gude, Journal of Manufacturing and Materials Processing (2022), 6(6), 146

Deformation of continuous fibre reinforced plastics during thermally-assisted forming or joining processes leads to a change of the initial material structure. The load behaviour of composite parts strongly depends on the resultant material structure. The prediction of this material structure is a challenging task and requires a deep knowledge of the material behaviour above melting temperature and the occurring complex forming phenomena. Through this knowledge, the optimisation of manufacturing parameters for a more efficient and reproducible process can be enabled and are in the focus of many investigations. In the present paper, a simplified pultrusion test rig is developed and presented to investigate the deformation behaviour of a thermoplastic semi-finished fiber product in a forming element. Therefore, different process parameters, like forming element temperature, pulling velocity as well as the forming element geometry, are varied. The deformation behaviour in the forming zone of the thermoplastic preimpregnated continuous glass fibre-reinforced material is investigated by computed tomography and the resultant pulling forces are measured. The results clearly show the correlation between the forming element temperature and the resulting forces due to a change in the viscosity of the thermoplastic matrix and the resulting fiber matrix interaction. In addition, the evaluation of the measurement data shows which forming forces are required to change the shape of the thermoplastic unidirectional material with a rectangular cross-section to a round one.


Warmforming Flow Pressing Characteristics of Continuous Fibre Reinforced Thermoplastic Composites

B. Gröger, D. Römisch, M. Kraus, J. Troschitz, R. Füßel, M. Merklein, M. Gude, Polymers (2022), 14(22), 5039

The paper presents research regarding a thermally supported multi-material clinching process (hotclinching) for metal and thermoplastic composite (TPC) sheets: an experimental approach to investigate the flow pressing phenomena during joining. Therefore, an experimental setup is developed to compress the TPC-specimens in out-of-plane direction with different initial TPC thicknesses and varying temperature levels. The deformed specimens are analyzed with computed tomography to investigate the resultant inner material structure at different compaction levels. The results are compared in terms of force-compaction-curves and occurring phenomena during compaction. The change of the material structure is characterized by sliding phenomena and crack initiation and growth.


A Data Driven Modelling Approach for the Strain Rate Dependent 3D Shear Deformation and Failure of Thermoplastic Fibre Reinforced Composites: Experimental Characterisation and Deriving Modelling Parameters

J. Gerritzen, A. Hornig, B. Gröger, M. Gude, Journal of Composites Science (2022), 6(10), 318

<jats:p>The 3D shear deformation and failure behaviour of a glass fibre reinforced polypropylene in a shear strain rate range of γ˙=2.2×10−4 to 3.4 1s is investigated. An Iosipescu testing setup on a servo-hydraulic high speed testing unit is used to experimentally characterise the in-plane and out-of-plane behaviour utilising three specimen configurations (12-, 13- and 31-direction). The experimental procedure as well as the testing results are presented and discussed. The measured shear stress–shear strain relations indicate a highly nonlinear behaviour and a distinct rate dependency. Two methods are investigated to derive according material characteristics: a classical engineering approach based on moduli and strengths and a data driven approach based on the curve progression. In all cases a Johnson–Cook based formulation is used to describe rate dependency. The analysis methodologies as well as the derived model parameters are described and discussed in detail. It is shown that a phenomenologically enhanced regression can be used to obtain material characteristics for a generalising constitutive model based on the data driven approach.</jats:p>


Modelling and Simulation Strategies for Fluid–Structure-Interactions of Highly Viscous Thermoplastic Melt and Single Fibres—A Numerical Study

B. Gröger, J. Wang, T. Bätzel, A. Hornig, M. Gude, Materials (2022), 15(20), 7241

A virtual test setup for investigating single fibres in a transverse shear flow based on a parallel-plate rheometer is presented. The investigations are carried out to verify a numerical representation of the fluid–structure interaction (FSI), where Arbitrary Lagrangian–Eulerian (ALE) and computational fluid dynamics (CFD) methods are used and evaluated. Both are suitable to simulate flexible solid structures in a transverse shear flow. Comparative investigations with different model setups and increasing complexity are presented. It is shown, that the CFD method with an interface-based coupling approach is not capable of handling small fibre diameters in comparison to large fluid domains due to mesh dependencies at the interface definitions. The ALE method is more suited for this task since fibres are embedded without any mesh restrictions. Element types beam, solid, and discrete are considered for fibre modelling. It is shown that the beam formulation for ALE and 3D solid elements for the CFD method are the preferred options.


Review on mechanical joining by plastic deformation

G. Meschut, M. Merklein, A. Brosius, D. Drummer, L. Fratini, U. Füssel, M. Gude, W. Homberg, P. Martins, M. Bobbert, M. Lechner, R. Kupfer, B. Gröger, D. Han, J. Kalich, F. Kappe, T. Kleffel, D. Köhler, C. Kuball, J. Popp, D. Römisch, J. Troschitz, C. Wischer, S. Wituschek, M. Wolf, Journal of Advanced Joining Processes (2022), 5, 100113

Mechanical joining technologies are increasingly used in multi-material lightweight constructions and offer opportunities to create versatile joining processes due to their low heat input, robustness to metallurgical incompatibilities and various process variants. They can be categorised into technologies which require an auxiliary joining element, or do not require an auxiliary joining element. A typical example for a mechanical joining process with auxiliary joining element is self-piercing riveting. A wide range of processes exist which are not requiring an auxiliary joining element. This allows both point-shaped (e.g., by clinching) and line-shaped (e.g., friction stir welding) joints to be produced. In order to achieve versatile processes, challenges exist in particular in the creation of intervention possibilities in the process and the understanding and handling of materials that are difficult to join, such as fiber reinforced plastics (FRP) or high-strength metals. In addition, predictive capability is required, which in particular requires accurate process simulation. Finally, the processes must be measured non-destructively in order to generate control variables in the process or to investigate the cause-effect relationship. This paper covers the state of the art in scientific research concerning mechanical joining and discusses future challenges on the way to versatile mechanical joining processes.


A Review on the Modeling of the Clinching Process Chain - Part II: Joining Process

B. Schramm, J. Friedlein, B. Gröger, C.R. Bielak, M. Bobbert, M. Gude, G. Meschut, T. Wallmersperger, J. Mergheim, Journal of Advanced Joining Processes (2022), 100134

DOI


Liste im Research Information System öffnen

Kontakt

Prof. Dr.-Ing. habil. Maik Gude

Sonderforschungsbereich Transregio 285

Teilprojekt A03

Maik Gude
Telefon:
+49 351 463 38153

Kontakt

Dr. Andreas Hornig

Sonderforschungsbereich Transregio 285

Teilprojekt A03

Andreas Hornig
Telefon:
+49 351 463 38007

Kontakt

Dipl.-Ing. Benjamin Gröger

Sonderforschungsbereich Transregio 285

Teilprojekt A03

Benjamin Gröger
Telefon:
+49351 463 38155